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INTRODUCTION

Hepatocellular carcinoma (HCC) ranks as the 6th
most prevalent form of cancer worldwide (. It is the
third most common cause of cancer death, and more
than half happened in China (4. Tumor relapse
remains the leading cause of death after surgery, with
a 5-year overall survival of approximately 10-20%

(5-7),

Microvascular invasion (MVI) is a definite risk
factor for the recurrence of HCC after curative
surgical therapies (®), and is a better predictor of
tumor recurrence and OS than the commonly used
Milan criteria. Practical preoperative evaluation of
MVI in HCC can assist clinicians choose appropriate
treatment approach for patients.
macrovascular invasion, which can be easily detected
by computed tomography (CT) and magnetic
resonance (MR) imaging, MVI is currently only
diagnosable by histopathology. Therefore, the
challenge is to identify MVI in patients before any
definitive therapy such as hepatectomy and liver

transplantation.
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ABSTRACT

Background: Background: To evaluate the diagnostic performance of different
radiomics models for preoperatively predicting microvascular invasion (MVI) of
hepatocellular carcinoma (HCC). Materials and Methods: A total of 124 patients who
had histologically confirmed HCC (training dataset: n=86; validation dataset: n=38)
were included. Clinical factors (CFs) were extracted from medical data. Radiomics
features were derived from the unenhanced phase, artery phase (AP), portal venous
phase and delay phase CT images. The least absolute shrinkage and selection operator
(LASSO) method was chosen to select the radiomics feature. Twelve models were
established using three modeling methods (logistic regression [LR], support vector
machine [SVM], and Bayes) with the radiomics signature. Receiver operating
characteristic (ROC) analysis was used to evaluate the diagnostic performance of the
models. A radiomics signature that performs well was integrated with the clinical
factors into a combined model. Results: AP radiomics signatures achieved the best
efficiency than other radiomics models. The LR model with the AP radiomics signature
as the input factor showed better performance than the SVM and Bayes models, with
an area under the curve (AUC) of 0.848 in the validation datasets. When integrating
the AP radiomics signatures and clinical factors, the combined model performed
better and reached an AUC of 0.875 in the validation datasets. Conclusions: The
radiomics model demonstrated excellent performance for preoperatively predicting
MVI in patients with HCC, especially the combined model. Different modeling methods
could influence the effects of the diagnostic performance.

Previous studies have shown that traditional
imaging characteristics, clinical indicators, pathology
and gene expression factors are associated with MVI,
for example, the D value based on IVIM may predict
MVI in HCC (>-11), The results may be affected by the
observers' subjective consciousness and lack of
highly reliable factors. There is a need to explore
whether there is a better way to predict MVI in HCC.

With the rapid development of technology,
radiomics performs high-throughput mining of
acquired imaging features, which provides predictive
or prognostic information (12 13), It has achieved
success in predicting the type of tumors by
developing appropriate models (4. Bakr et al (15
showed that radiomics analysis of CT imaging was
promising to assess MVI preoperatively in HCC with a
noninvasive manner. In addition, He et al. found that
the radiomics-based predictive model achieved
satisfactory preoperative prediction of MVI in HCC
patients (16). However, few studies have interpreted
and analyzed the similarities and differences within
the results obtained from different modeling methods
with multiple phases and explored which modeling
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algorithm is most suitable for research.

This study aimed to validate whether a radiomics
model combined machine learning could be more
beneficial for predicting MVI in HCC than a clinical
model. Additionally, we compared and analyzed the
impact of different modeling methods on the MVI
diagnostic performance.

MATERIALS AND METHODS

Patients

Our retrospective study was granted by the
institutional ethics review board (registration
number: No. 130, registration date: December 1,
2016), and a waiver of the requirement to obtain
written informed consent was approved. Between
January 2017 and May 2020, 327 HCC patients with
pathologically confirmed after surgical resection
were identified from the medical records. The
following inclusion criteria were considered: (1) HCC
patients with pathologically confirmed MVI status,
(2) patients who underwent preoperative contrast-
enhanced CT within two weeks of surgery, (3)
without prior history of intervention treatment, and
(4) no extrahepatic or lymph node metastasis. The
exclusion criteria were as follows: (1) lack of
complete clinical, pathological, or imaging data, (2)
recurrent or multiple tumors, (3) unsatisfactory
image quality. A total of 124 patients (median age, 55
years; interquartile range, 47-62 years; 98 men) were
remained (figure 1). After random allocation into two
groups at a ratio of 7:3, the numbers of patients in the
training and validation datasets were 86 and 38,
respectively.

HCC patients with MVI (MVI+) or without MVI (MVI -) confirmed by
surgery and pathology between January 2017 and May 2020 (n=327)

Tumor recurrence (n=15)

| Prior intervention treatment (n=29) |

Lack of complete clinical, pathological and imaging data (n=142) |
Exclusion

| Unsatisfactory image quality (n=6) |

Lymph node or extrahepatic metastasis (n=11) |

Final enrolled patients

(n=124)
MVI+ group
(n=46)

Figure 1. Process diagram of the study selection.

Routine preoperative laboratory examinations
including sex, age, hepatitis B surface antigen
(HBsAg) status, cirrhosis, maximum tumor diameter
(MTD), postoperative pathological grading (well,
moderate or poor), alpha-fetoprotein (AFP) level,
alanine aminotransferase (ALT), aspartate
aminotransferase (AST), platelet count (PLT) total
bilirubin (TB), prothrombin time (PT), direct
bilirubin (DB), and international normalized ratio
(INR), were collected from our medical records

system. Routine blood tests and liver function tests
were conducted within 14 days prior to the surgery.

CT technology

All CT images were acquired using 128-row
dual-source spiral CT scanners (Siemens Medical
Systems, Erlangen, Germany). The routine plain scan
was performed first, and then artery phase (AP) (25
s), portal venous phase (PVP) (50 s), and delay phase
(DP) (110 s) were obtained after injection of 1.1 mL/
kg of iopromide (Bayer HealthCare Pharmaceuticals
Inc) into the cubital vein at a flow rate of 2.4 mL/s,
followed by a 20 mL saline flush. The imaging
parameters of CT were as follows: 120 kV tube
voltage, 210 mAs, 0.5 s rotation time, 5 mm slice
thickness, and a 5 mm interval, 250 x 250 mm field of

view, 256 x 256 matrices.

Development of radiomics technology

The radiomics workflow is divided into four
procedures: tumor segmentation, radiomic feature
extraction, predictive model building, and evaluation.
Tumor segmentation: The primary 3-dimensional
volume of interests (VOIs) were manually delineated,
slice-by-slice, by reader 1 (with five years of
abdominal imaging experience) on each transverse
section from the unenhanced, arterial, portal venous
and delay phases using ITK-SNAP software (version
3.8.0, http://www.itksnap.org), and the final
segmentation results were verified by reader 2 (with
ten years of imaging experience).

Radiomic feature extraction and dimensionality
reduction: All original images and VOIs were brought
into the A.K. software (Artificial Intelligence Kit, GE
Healthcare, China) for the texture process. A group of
396 radiomics features, including shape, size,
intensity, and textural features, were extracted from
the CT images in each phase.

One thousand five hundred eighty-four feature
indices were preprocessed using mean or median
substitution to replace some feature parameters with
abnormal or missing values in each patient.
Parameters were normalized into a feature matrix so
that all features ranged between (0, 1). To quantify
the reproducibility and stability of the descendent
radiomics features, 40 randomly selected patients
were segmented based on their tumors. We excluded
features with intraclass correlation coefficient (ICC)
less than 0.80. Finally, the least absolute shrinkage
and selection operator (LASSO) method was applied,
it is widely used to decrease the redundancy and
irrelevance of radiomics features.

Clinical model and multiple machine learning
model constructions: Radiomics model, clinical
model, and combined model were established to
predict the MVI status preoperatively.

Radiomics signatures were extracted from the
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LASSO-selected features by R software (version 3.5.1,
Boston, MA, USA). With the AP, PVP, DP, and
unenhanced phase (UP) radiomics signatures as the
input factors, 12 radiomics models were established
using three modeling methods, involving logistic
regression (LR), support vector machine (SVM) and
Bayes. The model effectiveness of the three modeling
methods and four phases were compared to select
the optimal performance phase and modeling
algorithm for establishing the clinical and combined
models.

Clinical factors that were significantly associated
with MVI were screened by stepwise variable
selection. We applied the optimal performance
modeling methods with the final selected clinical
predictors for construction of the clinical model.

The combined model was constructed by

integrating the radiomics signature in the best phase
and the effective clinical predictors using the optimal
performance modeling methods. The radiomics-
based nomogram for predicting the risk of MVI was
constructed with the LR model.
Model evaluation: ROC curves were plotted to
quantify the efficiency of the models for identifying
MVI. Sensitivity, specificity and accuracy were also
obtained. Moreover, the DeLong test was performed
to compare the area under the curves (AUCs) among
the models. A calibration curve was plotted to
intuitively assess the agreement between the
predicted risk and actual risk of MVI, and a decision
curve was implemented to evaluate the clinical
usefulness of the combined model.

Statistical analysis

All statistical analyses were performed using SPSS
(version 25, Chicago, IL, USA), R software, and IPMs
(version 2.0.2, General Electric, USA). Categorical
variables were compared using the Chi square test,
and continuous variables were evaluated using the
t-test or Mann-Whitney U test. Differences of P<0.05
were considered statistically significant.

RESULTS

Basic clinical characteristics

Based on the pathology reports, all patients were
divided into the MVI present group (n=46) and the
MVI absent group (n=78). Comparisons of the clinical
characteristics between these two groups are
summarized in table 1.

Stepwise variable selection showed that MTD (OR
1.981; 95% CI 1.132-3.466), PLT (OR 1.212; 95% CI
0.706-2.082), pathological grading (OR 1.986; 95%
CI 0.995-3.964), and AFP (OR 1.383; 95% CI 0.835-
2.292) were independent predictors of MVI. Both the
training and validation groups showed statistically
significant differences in MTD and HBsAg (P < 0.05).
In the training dataset, pathological grading and AFP
exhibited significant differences in the training group,

however, no differences were observed in the
validation dataset (table 1).

Table 1. Comparisons of clinical characteristics in the training
and validation datasets.

Training dataset Validation dataset

Characteristic

(N=86) (N=38)
MVi+[Mvi- [, MV [ Mvi- [,
(N=32)|(N=54) (N=14) | (N=24)

Age (vears), me-| o | 5o 15100| 52 | 57 |0.151

dian
Gender
Male 28 40 ]0.139 12 18 |0.435
Female 4 14 2 6
HBsAg
Negative 2 14 [0.0237| 5 2 [0.036°
Positive 30 40 9 22
Cirrhosis
Negative 13 22 10.992 6 7 0.391
Positive 19 32 8 17
MTD (cm), 7 3 |0.004"| 7 4 o011
median
Pathologic grade
Well 0 8 [0.005| O 2 0.314
Moderately 24 43 12 21
Poorly 8 3 2 1

AFP, median [364.70]18.20[0.001"[ 40.45 | 13.55 | 0.574
ALT, median | 36.49 |32.30|0.288 | 29.91 | 32.97 | 0.304
AST, median | 46.88 [40.65[0.249 | 32.66 | 43.15 | 0.397
TB, median 16.65(16.42|0.411 | 16.06 | 15.49 | 0.380
DB, median 3.45 | 3.47 [0.574| 4.02 | 4.17 |0.325

PLT, median [163.00[161.50| 0.496 {206.50|133.50| 0.053

PT, median 12.30{12.00|0.260 | 12.55 | 11.85 | 0.150

INR, median 1.06 | 1.02 [0.202 | 1.08 1.02 | 0.154
HBsAg hepatitis B surface antigen, MTD maximum tumor diameter,
IAFP alpha-fetoprotein, ALT alanine aminotransferase, AST aspartate
aminotransferase, TB total bilirubin, DB direct bilirubin, PLT platelet]
count, PT prothrombin time, INR international normalized ratio
P-value < 0.05

MVlI-related radiomic signatures

MVI-related radiomic signatures based on the AP,
PVP, DP and UP feature datasets were developed.
After eliminating redundant features, 336, 384, 349
and 366 features were retained out of 1,584 features
(396 features per phase) from the AP, PVP, DP and UP
images. Furthermore, based on the seven, six, nine,
and seven selected radiomics features screened by
the LASSO algorithm, the corresponding radiomics
signatures of the four phases were constructed. Table
2 summarizes the details of the selected features.

Performance of the different radiomics models

Twelve radiomics models were constructed by the
LR, SVM, and Bayes modeling methods. The AP, PVP,
DP, and UP radiomics signatures were used as the
input factors for these radiomics models. The
predictive performance of the different models in
validation dataset is presented in table 3.

The AP radiomics signature achieved the higher
AUC compared with the PVP, DP, and UP radiomics
signatures in all modeling methods (table 3).
Furthermore, the AP radiomics model established by
LR demonstrated better estimation of the MVI risk,
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with an AUC of 0.848 in the validation datasets,
compared with the SVM model (AUC = 0.836) and
Bayes model (AUC =
demonstrated a statistically significant difference
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(P=0.033),

0.807). The DeLong test
(figure 2).

between the AUCs of AP and DP by the LR method
Table 2. Selected features for the UP, AP, PVP and DP.

and no

Feature parameter

OR (95% Cl)

Unenhanced phase (N = 7)

SizeZoneVariability

1.272(0.513-3.158)

Sphericity

0.421(0.225-0.786)

ShortRunHighGreyLevelEmphasis_angle90 offsetl

0.954(0.453-2.009)

LongRunEmphasis_AlIDirection_offset4_SD

1.163(0.520-2.599)

ShortRunEmphasis_AllIDirection_offset4_SD

0.704(0.335-1.477)

GreyLevelNonuniformity AllDirection_offset7 SD

2.201(0.287-16.848

RunLengthNonuniformity AllDirection offset4 SD

3.048(0.467-19.874

Arterial phase (N =7)

LowGreyLevelRunEm+B4:L12phasis_angle90 offsetl

0.525(0.175-1.573)

HighGreyLevelRunEmphasis_AllDirection_offset7 SD

0.543(0.242-1.219)

Sphericity 0.365(0.190-0.703)
kurtosis 0.862(0.333-2.233)
Intensity Variability 1.658(0.732-3.755)
skewness 1.559(0.664-3.661)

ShortRunHighGreyLevelEmphasis_angle135_offsetl

0.668(0.290-1.537)

Portal venous phase (N = 6)

Compactness2

2.633(1.461-4.743)

ShortRunLowGreyLevelEmphasis_angle90 offsetl

0.618(0.168-2.276)

ClusterProminence_angle90_offset7

1.245(0.638-2.428)

ShortRunEmphasis_AllDirection_offset4 SD

0.627(0.216-1.817)

ShortRunHighGreyLevelEmphasis_angle135_ offsetl

0.727(0.374-1.413)

RunLengthNonuniformity angle90_offset4

2.587(1.017-6.577)

Delay phase (N =9)

GLCMEnergy AllDirection offset7

0.568(0.092-3.496)

SizeZoneVariability

2.184(0.954-5.001)

ZonePercentage 1.661(0.872-3.162)
ShortRunLowGreylLevelEmphasis_angle135 offsetl 0.795(0.273-2.319)
Sphericity 0.249(0.112-0.554)

stdDeviation

0.477(0.175-1.297)

ClusterProminence_angle0_offset7

1.157(0.519-2.575)

InverseDifferenceMoment_angle45_ offset7

0.724(0.245-2.143)

GLCMEnergy_angle45_offset4

0.841(0.234-3.015)

Seven, seven, six and nine features were ultimately selected in the UP, AP, PVP and DP by LASSO method,
the P values of all features are less than 0.05.

Table 3. Predictive performance of three modeling methods in the validation dataset

significant difference were
observed among the AUCs of radiomics model built

using the LR, SVM and Bayes algorithms (P>0.05)

Different Logistic Regression model Support Vector Machine model Bayes model
models |Accuracy |Sensitivity | Specificity | AUC |Accuracy |Sensitivity | Specificity | AUC | Accuracy |Sensitivity | Specificity | AUC
AP 0.789 0.643 0.875 10.848| 0.737 0.643 0.792 10.836| 0.789 0.643 0.875 [0.807
PVP 0.737 0.571 0.833 0.818| 0.816 0.786 0.833 |0.815| 0.658 0.429 0.792 [0.768
DP 0.737 0.643 0.792 ]0.807| 0.658 0.357 0.833 |0.783| 0.737 0.643 0.792 ]0.783
UP 0.737 0.571 0.833 ]0.783| 0.737 0.429 0.917 ]0.756| 0.711 0.429 0.875 [0.757
AP arterial phase, PVP portal venous phase, DP delay phase, UP unenhanced phase, AUC area under the curve
a ROC curve of given models b ROC curve of given models C ROC curve of given models
1.0 1.0 1.0
0.8 4 0.8 1 0.8 1
2 06 2 0.6+ 2 06
2 2 2
% 041 & 044 & 041
,f’ —— Logistic_1 AUC = 0.852 e —— SVM_1 AUC = 0.836 R4 —— Bayes_1 AUC = 0.830
021 7 —— Logistic 2 AUC = 0.847 | 2] s — svM2AuUC=0817 | 027 o —— Bayes_2 AUC = 0.810
- —— Logistic_3 AUC = 0.777 7 —— SVM_3 AUC = 0.767 ,/' —— Bayes_3 AUC = 0.804
0.0 ’ — Logistic_4 AUC = 0.807 0.0 — SVM_4 AUC = 0.817 0.0 1 — Bayes_4 AUC = 0.764
00 02 04 056 08 10 00 02 04 0.6 08 10 0.0 02 0.4 056 08 10
1-Specificity 1-Specificity 1-Specificity

Figure 2. Comparison of receiver-operating characteristic (ROC) curves for the radiomics models derived from three modeling
methods for the prediction of microvascular invasion. ROC curves of the logistic regression model (a), support vector machine
(SVM) model (b) and Bayes model (c) with the UP, AP, PVP and DP radiomics signatures as the input factors. _1 represents the AP

signature, _2 represents the PVP signature, _3 represents the DP signature, and _4 represents the UP signature.
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Clinical model construction

The LR method with better performance was
selected from among the radiomics models, and the
above four clinically factors were applied to
construct the clinical prediction model. The AUCs
were 0.776 in the training datasets and 0.807 in the
validation datasets.

Performance of the combined model

The combined model integrating the effective
clinical factors (MTD, AFP, PLT, and pathological
grading) and the AP radiomics signature was
established by LR method. The AUC, accuracy,
sensitivity and specificity were 0.851, 82.6, 71.9 and
88.9% in the training datasets and 0.875, 84.2, 71.4
and 91.7% in the validation datasets respectively. In

addition, the combined model showed better
prediction performance than the other single
radiomics and clinical models (table 4).

The calibration curve of this model yielded great
consistency between the actual probabilities and
predicted probabilities of MVI (figure 3). Moreover,
the decision curve (figure 3) demonstrated that a net
benefit can be obtained from our combined model.

MVlI-predicting nomogram development and
validation

A radiomics nomogram was built as a graphical
presentation based on the combined model (figure
4). Adding the points of each risk factor results in the
total number of points, which indicates the risk of
MVI intuitively.

Table 4. Predictive performance of different models in Logistic Regression method

. Training dataset(N=86) Validation dataset(N=38)
Different models 2 — — —
Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC
AP 0.791 0.625 0.889 0.852 0.789 0.643 0.875 0.848
VP 0.767 0.625 0.852 0.849 0.737 0.571 0.833 0.818
DP 0.779 0.688 0.833 0.861 0.737 0.643 0.792 0.807
uUp 0.756 0.531 0.889 0.821 0.737 0.571 0.833 0.783
CF 0.779 0.594 0.889 0.776 0.737 0.429 0.971 0.807
AP+CF 0.826 0.719 0.889 0.851 0.842 0.714 0.917 0.875
AP arterial phase, PVP portal venous phase, DP delay phase, UP unenhanced phase, CF clinical factor, AUC area under the curve
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DISCUSSION

In this study, we developed and validated the
machine learning model based on CT radiomic
features that could effectively distinguish patients
with or without MVI preoperatively. The AP
radiomics signature exhibited higher accuracy and
AUC values for preoperatively predicting MVI than
the other phases. In addition, the LR model
performed best in our study and the combined model
that integrated effective CFs and the AP radiomics
signature showed significant improvement compared
with the radiomics signature or clinical model alone.
Additionally, a nomogram based on the combined
model provided a straightforward approach to
demonstrate the individual risk for MVI in each
patient with HCC.

Compared with traditional imaging
characteristics, radiomics reflects potential and
valuable micro-imaging features. Furthermore, the
results are less affected by the subjective
consciousness of radiologists (14). Radiomics is swiftly
evolving as a central imaging technology for
personalized precision medicine in oncology (12.17), In
our study, the radiomics model showed high accuracy
for preoperatively predicting MVI.

Ma et al (18 reported that the PVP radiomics
model displayed better predictive performance than
other phases. In contrast to this study, we
demonstrated that the AP model based on radiomics
signature performed better than the PVP, DP, and UP
models. Our research results are based on a variety of
modeling methods, and may be based on the
following: (1) according to the hemodynamics, most
of the small vessels entering the tumor mass are
supplied by the hepatic artery, and obvious
enhancement can be seen during the arterial phase of
the enhanced scan (8 19), (2) the obstruction of the
minute portal venules by tiny tumor thrombus
around the tumor may lead to a decrease or lack of
venous blood supply, resulting in increased
compensatory arterial perfusion (@0 21), These
characteristics can be well captured by feature
extraction software in AP.

Our study discovered seven features [three
histogram features (kurtosis, skewness, and
IntensityVariability), three texture features (LGLRE,
HGLRE, and SRHGLE) and one shape feature
(sphericity)] closely related to the biological
characteristics and heterogeneity of HCC in the AP
radiomics model (22-24), The histogram-based features
were first-order statistics, which mainly relied on the
intensity of the information statistics, reflecting the
distribution of the gray values. To put it in practical
terms, ‘kurtosis’ reflects the degree of gray contrast,
where higher values indicate stronger heterogeneity,
and ‘skewness’ represents the distribution of the
pixel values. Texture features are second-order
statistics that can be used to describe the complexity

and distribution situation, the higher the value is, the
more complicated the texture distribution. Because
malignant tumors are more prone to invasion and
degeneration, their heterogeneity is more apparent
(22), These radiomics features were identified in our
study to be valuable for predicting MVI.

Former studies have used different single
modeling methods to predict MVI before surgery. He
et al (18 constructed a radiomics model for MVI
predictive, and the model exhibited average-to-good
efficacy. Bakr et al (15 also made a preliminary
attempt to predict MVI. These studies have shown
discrepancies in diagnostic performance. Our study
further validated three commonly applied machine
learning methods, and is a more comprehensive
study of approaches for preoperatively predicting
MVI. The accuracy, sensitivity, specificity and AUC
value of the prediction model established by the LR
algorithm in this study were slightly higher than
those of the SVM and Bayes models. However, there
was no statistically significant difference among the
AUC values of the three modeling methods. LR is
often preferred in the medical field due to its
low computational cost, and it is easier to
understand and implement than other
algorithms (25. SVM is suitable for small scale
samples, significantly solving nonlinear and
high-dimensional data, but it is challenging for
solving multiclassification problems (26.27), Bayes is a
supervised learning generative model with a stable
classification efficiency. Its’ main disadvantage is that
itignores interactions among the features, which may
lead to feature redundancy (28). The three modeling
methods in our study have no obvious advantages in
the preoperative prediction of HCC microvascular
invasion, and it is difficult to reflect the
characteristics of each modeling algorithm. Possibly
due to the small sample size in this study and the
unbalanced number of patients in the validation set.

Previous studies have noted a combined model’s
efficacy for cancer diagnosis and therapeutic effects
(16.29), In our study, the combined radiomics-CF model
showed superior predictive performance than either
the CF model or the radiomics signature alone. This
showed that a combination of different risk factors
has a certain synergistic effect on the prediction of
HCC MVI. Furthermore, the decision curve analysis
implied that the combined model was clinically
helpful, and may promote personalized therapy in
HCC patients.

Our study inevitably has potential limitations that
need to be addressed in future studies. First, some
patient clinical indicators were missing due to
incomplete preoperative examination items, and HCC
patients without surgical treatment were excluded,
which resulted in a small sample size and an uneven
distribution in the MVI positive group. These factors
ultimately lead to potential data selection bias and
may influence the interpretation of the results.
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Second, this study was conducted in a single-center,
and a multi-institutional study should be performed
to verify the results. Third, few cases had both CT and
MR images in our study, so we did not include any
MRI data. Additional studies are needed to determine
whether MRI may lead to better results for predicting
the histologic status in HCC based on the
characteristics of multiple parameters. Finally, this
study only selected three well-known modeling
methods and did not comprehensively analyze all
current modeling methods.

CONCLUSIONS

Radiomic parameters extracted from CT images
show potential value to facilitate the prediction of
MVI in HCC. A combined model that incorporated AP
radiomics signatures and CFs achieved remarkable
preoperative prediction of MVI. We compared
different modeling methods for the preoperative
diagnosis of MVI, which widened the choice of
methods available to the reader. Future research
should focus on reproducibility and robustness to
explore standardization so that radiomics can be
further developed into a useful, noninvasive tool in
clinical practice.
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